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Ljubljana, Slovenia

Published in: Computer Vision and Image Understanding
doi:10.1016/j.cviu.2008.03.001

Accepted: 9 March 2008

Abstract

This paper proposes a novel trajectory-based approach towards automatic recog-
nition of complex multi-player behavior in a basketball game. First, a probabilistic
play model is used on player trajectory data to segment the play into game phases
(offense, defense, time-out). This way, both the temporal boundaries of the observed
activity and its broader context are obtained. Next, the team activity is analyzed in
more detail by detecting key elements of the basketball play. Following the basket-
ball theory, these key elements (starting formation, screen, move) are the building
blocks of basketball play, and therefore, their temporal order is used to produce the
semantic description of the observed activity. Finally, the recognition of the activity
is achieved by comparing its semantic description to the descriptions of manually
defined templates, stored in the database. The effectiveness and robustness of the
proposed approach is demonstrated on 71 examples of three types of basketball
offense.
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1 Introduction

One of the paramount problems in sport science is objective analysis of player
performance. While individual player’s physical abilities can be readily tested
in laboratory conditions, the team performance can only be observed during
the actual gameplay. This process may include advanced analysis methods,
such as video recording and statistical analysis, but it nevertheless relies on
observation and manual annotation by sport experts, with the potential risk of
becoming too subjective. Additionally, manual annotation is a time consuming
and tedious task, mostly limited either to the academic research or to the
small number of teams which can afford the sufficient number of qualified
experts. Moreover, some researchers have found [1] that even sport experts
often cannot observe and recall all the details which can prove crucial for the
correct interpretation of results.

Therefore, an increasing volume of research concerned with automatic or semi-
automatic recognition and analysis of human behavior in sports is not surpris-
ing. The ultimate goal of such research is to develop methods for automatic
interpretation and analysis of team performance, which would present a con-
cise summary of the team’s and players’ strengths, weaknesses and mistakes.
In addition to that, the same methods could be used in many other areas, such
as sports broadcasting, as a tool for automatic extraction of the course of the
gameplay, either for the purpose of enhancing live broadcasts or facilitating
easier video archival. In the broader context, similar methodology could be
used in human motion analysis for video surveillance, ambient assisted living,
and similar tasks. However, the main focus of this article is the challenge of
observing the sports match and interpreting the team activity on the field.

The quality of the team has two important components. The first component
encompasses the skills of the players, and is expressed as their technical knowl-
edge. The second component is expressed as the overall team tactics. In order
for a team to be successful, it needs individuals with excellent technical skills.
Nevertheless, these individuals have to be able to act together as a group - a
task that requires good coordination between individual players and can be
achieved only by significant amount of training. Following this challenge, the
focus of this article is on the analysis of coordinated activity in team sports,
in particular basketball.

It is widely accepted [2] that the most successful players have a capability
to react differently in similar situations. On the team level, the situation is
similar - good teams can quickly change their tactics if needed. Such behavior
prevents the opposing teams to prepare a good defense, and keeps the play
interesting, as both teams have to continuously adapt to the situation on
the court. This introduces a certain level of complexity and randomness in
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the team performance, and makes the design of entirely automatic analysis
system, which would recognize, understand and grade every possible situation
on the court extremely difficult. However, due the nature of sport rules and
rigorous player training, the motion of players across the field is not entirely
random, and it is reasonable to expect that it is possible to extract some
common features of the team, especially when considering that a coordinated
team play is usually trained in advance.

The remainder of this paper is structured as follows. In the rest of this sec-
tion we give a short overview of the related work and present the concept of
our approach. The methods for segmentation and recognition of the complex
multi-agent behavior are presented in Section 2, and in Section 3 the experi-
mental results are presented. Finally, the summary and future work are given
in Section 4.

1.1 Related work

Several different approaches to the problem of motion analysis and activity
recognition have been proposed. They could be divided into two categories
based on the type of data they work on:

• the analysis of single or multi-person activity from raw visual data, and
• the analysis of single or multi-person activity from temporal trajectories.

There are alternative classifications of the motion analysis approaches [3, 4],
however, this one was chosen due to its generality and suitability to classify the
work, related to the sport domain. Although our approach works on trajectory
data, we also present the short overview of the sports-related research based
on the raw visual data. We deem this appropriate, since the general analysis
concepts of the two categories coincide in several aspects.

1.1.1 The analysis of activity from raw visual data

This category was extensively covered in the survey of Gavrila [3], where
several approaches to the ”Looking at People” domain are discussed, with the
emphasis on the visual analysis of gestures and whole body motion. Analysis
approaches are divided into three different categories according to the type of
the model used to represent the motion - the 2D approaches with or without
explicit shape models and the 3D approaches. As the author states, these
approaches can be found in a number of promising applications, such as virtual
reality, ”smart” surveillance systems, advanced user interfaces, model-based
video encoding and motion analysis. In recent years many interesting sport-
related applications appeared in the motion analysis and modeling domain,
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such as content-based indexing of video footage [5, 6], or learning motion
models in golf [7], soccer [8], baseball [9], or choreography in dance [10] and
acrobatics [11].

The emphasis of the work from this category is generally focused on match-
ing an unknown test sequence with a library of labeled training sequences,
which are learned from training examples [3]. Different techniques are used to
describe complex dynamics of the continuous processes that can be observed
from the human behavior such as using the spatio-temporal templates to repre-
sent the walk [12], using phase space constraints to represent the body motion
[13] or the use of Hidden Markov Models (HMMs) to represent states of the
visual behavior and the transitions between them [14]. These techniques can
be successfully implemented in sport and can provide athletes the feedback
needed to help them improving their kinematic skills. Regarding the applica-
tions, the emphasis of these approaches is usually on teaching and monitoring
the correct execution of certain predefined motions, such as ball handling and
throwing in basketball, or for example swinging of a golf club [7].

1.1.2 The analysis of single and multi-person activity from temporal trajec-
tories

The techniques described so far usually do not explicitly consider the global
spatial properties of the observed behavior, which may be of significant im-
portance. Let us for example imagine a basketball player, making a shot. By
using the techniques described in previous section, we may learn that a shot
was executed perfectly. However, a larger context of this activity has to be ob-
tained in some other way. For example, we would like to know if the situation
on the court warranted execution of the shot at this particular time and place.
To answer this question, we would like to know if any of player’s teammates
were in an even better position for the shot, and whether the opponents were
in such formation that his shot was really a good choice. To answer these
questions,we need to turn to the analysis of trajectories, obtained by tracking
of individual players.

The methods of trajectory-based activity analysis can be divided into the two
groups. The first group represents the methods which deal with modeling of the
statistical distributions of trajectories. Johnson and Hogg [15, 16] presented
two approaches for modeling the variable non-linear behaviors. In the first
approach, a competitive learning neural network was used on flow vectors
from the image sequences of pedestrians [15], and in the other, the probabilistic
motion model was obtained using Gaussian mixture model, representing the
system state changes of the pedestrian motion [16].

The second group of trajectory-based analysis of human behavior involves the
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more sophisticated modeling of coordinated group activity, which usually in-
volves some additional information provided by the domain expert [17, 18, 19].
Li and Woodham [19] present a concept system to represent and reason about
selected hockey plays based on the trajectory data, augmented with domain
knowledge such as forward/backward skating, puck possession, etc. The Finite
State Machine (FSM) model is used as a mechanism for representing, identify-
ing the observed activity and reasoning about possible better outcomes of the
observed situation. Intille and Bobick [17] have built models of the football
plays using belief networks and temporal graphs. A similar approach was used
by Jug et.al [18] to assess the team performance in basketball offense. The main
contribution of the latter two approaches is the representation of multi-agent
activity and recognition from noisy trajectory data. This is done by divid-
ing the multi-agent activity into the individual visually-grounded, goal-based
primitives which are probabilistically integrated by the low-order temporal
and logical relationships. However, there are two main problems with such
approach. The first one is the need for precise temporal segmentation of the
analyzed trajectories. The second problem is the difficulty of building tem-
poral and logical relationships, especially due to many different parameters
which need to be defined manually. Therefore, such approach is not particu-
larly suited in cases when either large quantity of data has to be analyzed, or
many different behavior models are used in the analysis.

1.2 Our approach

In our work, we address the problem of trajectory-based analysis of basketball
game, with the goal of overcoming the described problems. We chose our
approach with the expert sport knowledge in mind. Similarly to the procedure
used in sport research, we perform a two step analysis process, where the match
is first segmented according to phases of the play (offense, defense, time-out),
and then the detailed analysis of each segment is performed.

In the first step, a Gaussian mixture model is used to segment the continu-
ous player trajectories into shorter game segments, corresponding to offense,
defense and timeouts. This stage provides us both with rough segment bound-
aries and with the broader context of the game inside a particular segment.
In the second step, we are able to perform the recognition of particular type
of basketball activities. In this article, we only focus on the recognition of the
organized activity in the offensive part of the game. The basketball offense is
the most interesting and widely studied [2, 20] part of the game for coaches
and basketball experts. It is trained in advance and the set of trained offenses
for a particular team does not change significantly during the course of one
match.
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To perform the recognition of activity, we developed three different trajectory-
based detectors of key basketball elements, which are the theoretical building
blocks of any basketball play. These detectors are used to transform player
trajectories, which represent observed activity, into the sequence of symbols -
the semantic description. Obtained symbols describe the actions and interac-
tions between players, and contain the notation of the observed element and
its observed position on the court. To determine the similarity between the
observed activity and the predefined activity template, we simply compute a
Levenstein distance between the sequence of symbols obtained from the tra-
jectories of the players and the sequence of symbols obtained from the activity
template. By repeating the template-trajectory matching procedure for every
template available, we can find the template with the shortest distance to the
sequence of symbols, obtained from trajectory data. If the distance is below
a certain threshold, we assign the label of the most similar template to the
observed trajectory segment.

Beside removing the need for manual segmentation, an important contribution
of our approach is the simplified process of providing expert knowledge in
machine-suitable format. The method used by Intille and Bobick [17] consists
of providing expert knowledge in the form of temporal and logical relationships
in belief network, for every activity that has to be recognized. This process is
unsuitable for field experts (i.e. sport coaches), slow, and can be inaccurate
or subjective because of non-obvious relationships between the activity and
the network structure [17, 18]. In our case, the specific structure of basketball
activity is encoded in the form of activity templates, which can be represented
graphically and are significantly more familiar to the average sport expert.

2 Methods

This section describes the methods, developed for analyzing player motion
data in the context of cooperative basketball play. We assume that we have
trajectory data of all players available for the whole duration of the match. In
Section 3, we will show that given current state of the technology, this is not
unreasonable.

The analysis is conducted in two steps. First, the players’ trajectories are
temporally segmented into three game phases - offense, defense and time out.
The segmentation is achieved using the probabilistic game model, presented
in Section 2.1. Next, the template-based recognition procedure is applied to
every individual segment of the match (Section 2.2).
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2.1 Trajectory segmentation

Team sports are determined both by their rules and by the collective goals,
which the teams must pursue to defeat their opponents. In many popular team
sports, the court is divided into two halves, and the teams’ activities alternate
between offense and defense, with minor interruptions, such as time-outs, free
throws and free kicks. Therefore, the game could be regarded as a process,
consisting of certain number of discrete phases. These phases correspond to
offensive play, defensive play, time outs, inactive play, free throws, free kicks,
and other miscellaneous activities.

In case of basketball, our model assumes that the play contains the following
three phases: offensive play (m1), defensive play (m2) and time outs (m3):

M = {m1, m2, m3} . (1)

Our basic assumption is that there exists intrinsic relation between parameters
of player motion (position, velocity and direction) and game phases. Therefore,
our model is based solely on the observation of players’ motion. Similar to
Erdmann [21], we calculate the collective position of players by calculating
the team gravity center, (i.e. the mean position of N players, belonging to
single team), and observe the two dimensional motion of this single point
across the court. Therefore we define the flow vector x(t) as

x(t) = [xt, yt, ∆xt, ∆yt]
T , (2)

where xt and yt represent the position of the team gravity center

xt =
1

N

N
∑

j=1

xj , yt =
1

N

N
∑

j=1

yj, (3)

and ∆xt and ∆yt represent the corresponding velocity components of the
gravity center at time t

∆xt = xt − xt−1, ∆yt = yt − yt−1. (4)

To account for the variability and uncertainty in player motion and team
behavior, we define a probabilistic model of the game phases using a mixture
of Gaussians [22]

p(x|mi) =
n

∑

k=1

α
(i)
k · p(x|µ(i)

k , Σ
(i)
k ), (i = 1, 2, 3), (5)
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where mi represents game phase, parameters αk represent the mixing coef-

ficients such that
n
∑

k=1
α

(i)
k = 1, p(x|µ(i)

k , Σ
(i)
k ) is the k-th Gaussian density

function with mean µ
(i)
k and the covariance matrix Σ

(i)
k , and n represents the

number of Gaussian density functions used to model each game phase.

To determine the parameters of the Gaussian density functions, we use the
Expectation Maximization (EM) algorithm [23] on a manually labeled training
sequence. As an illustration, Figure 1 shows the obtained game model, which
uses two components (n=2) per each phase. It can be observed that similar,
but mirrored likelihood functions are obtained for the phases which represent
offensive and defensive play.

(a) (b)

Fig. 1. (a) Trajectory of the team gravity center. (b) Gaussian mixture models for
the three game phase phases obtained by manually labeling the trajectory from
figure (a); (p(x|m1) - orange full line, p(x|m2) - green dashed line, p(x|m3) - black
dotted line, where m1,m2 and m3 denote the offensive play, defensive play and time
outs). The arrows show the direction and magnitude of velocity component of the
flow vector.

Once the game model is built, we can calculate the probability of model mi

given current flow vector x(t) using Bayes formula

p(mi|x(t)) =
p(x(t)|mi)p(mi)

p(x(t))
, (i = 1, 2, 3), (6)

and given that the probability p(x(t)) remains constant for all models mi, the
classification of the given sample x(t) at time t is expressed as

m∗(t) = arg max
mi∈M

{p(x(t)|mi)p(mi)} , (i = 1, 2, 3), (7)

where p(mi) is the a priori probability of phase mi. These probabilities were
estimated in advance by roughly estimating the amounts of time teams usually
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spend in each individual game phase.

p(M) = [p(m1), p(m2), p(m3)] = [0.45, 0.45, 0.10] . (8)

This method provides reasonably good classification for the individual time in-
stants. However, when used for trajectory segmentation, it produces a number
of extremely short segments, as it does not enforce any temporal continuity.
Thus, we enforce this requirement by smoothing the output of the classifica-
tion process using the nonlinear kernel in the following form:

m∗∗(t) = arg max
mi∈M







t+K
∑

k=t−K

Dm∗,mi
(k)







, Dm∗,mi
(k) =











1; m∗(k) = mi

0; otherwise











.(9)

This way, the t-th sample is assigned the label that receives the highest score
among the observed individual labels inside the kernel window of length 2K+1.
The kernel width is set to twice the length of theoretically shortest possible
segment of play, which in basketball corresponds to approximately three to
four seconds.

2.2 Recognition of complex play activities

The previously described segmentation method provides us with the short
segments of the match, labeled as ”offense”, ”defense” or ”time-out”. This
information puts each of the segments in its appropriate context, which in
turn enables to handle different contexts of the play in different ways. In this
paper, we focus only on the analysis of basketball offense.

Once the segmentation is performed, we know that the activity of interest
starts and ends somewhere inside the segment. The information we don’t have
and wish to obtain is, which of the known activities (known types of basketball
offense) is the team performing. For that purpose, we represent the team ac-
tivity as a sequence of symbols, which describe players’ actions with sufficient
degree of detail.

2.2.1 Representation of complex play activities and activity templates

In sport theory, a play is comprised of basic (key) elements of the play. These
elements are sport specific; they may vary significantly from sport to sport and
depend heavily on the rules of a particular sport. In basketball and European
handball, for example, a common element of play is screening, where a player
tries to make the space for his teammate by blocking the teammate’s defender.
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This way, the teammate gets a better chance of scoring. Another element,
called cutting, can be observed in basketball or soccer, where player tries to
cut his way into the empty space on the court, where he has a better chance
of receiving the ball and scoring.

We designed the method for play recognition, where we rely on detection of
three basic elements of the basketball play - screen, move and player forma-
tion. These elements form a dictionary, which is, along with their spatial and
temporal relations, used to build semantic descriptions of player and team ac-
tivities, in our case, basketball offenses. Such approach transforms a group of
player trajectories, obtained by tracking, into a stream of corresponding sym-
bols. These symbols can also be, if needed, represented in a human readable
form. They represent a simple narrative of what was the team doing on the
court. Thus, a complex problem of multiple agents performing a complex ac-
tivity is transformed into a problem of analyzing sequences of symbols, which
represent a course of a play.

The recognition is achieved by comparing the semantic description of observed
trajectory segment with semantic descriptions, generated from the activities,
stored in the activity database.

These stored activities are called activity templates. They are detailed, machine
readable representations of any basketball activity, and can be automatically
rendered into semantic descriptions when needed. They contain the sequence
of key elements, and their (ideal) positions on the court in form of absolute
court coordinates. Activity templates also contain associations between key
elements of the play and the players, which should perform them. Players are
denoted only by abstract indexes (numbered from 1 to 5, since there are 5
players in the basketball team). Activity templates may contain activity in
greater detail than the resulting semantic descriptions and can be rendered to
their graphical representation as well, to help users who design them.

Using this representation of basketball play, our problem of recognition and
analysis of complex activities has been transformed into the problem of com-
paring two sequences of symbols, where one sequence belongs to the trajec-
tory segment being analyzed, and the other belongs to one of the plays from
database. The calculated distance between the two sequences can be used
in two ways. First, it enables us to find the most similar activity from the
database of known activities. Second, it can be interpreted as a measure of
quality of team performance - if the distances to all of the stored plays are
large, the activity is either not in database, or, it was just performed poorly.
In case that the activity is in the database, the distance increases with the
increasing discrepancies between the observed activity and the activity from
the database, which may indicate poorly trained team or the team which has
trouble with opponent’s defense.
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In order to derive semantic descriptions from trajectory data, we had to model
the expert knowledge, used in the basketball community. Besides the activity
representation itself, this includes modeling of the court, which is used to
determine the spatial characteristics of the observed elements, and modeling
of the key elements. The derivation of this knowledge is described next.

2.2.2 Court partitioning

In the process of transforming trajectory data into sequence of symbols, we
need to preserve certain amount of spatial information. We encode spatial po-
sition of screens and player moves according to the region of the court where
these elements have been observed. Thus, a certain degree of generality is pro-
vided, as the elements, observed in same regions, produce the same spatial
encoding, regardless of the actual position of the element within the region.
This way, for example, a player movement across the court is encoded as the
sequence of crossing region boundaries, and we can write it in human readable
form as

M PlayerX CourtRegionA CourtRegionB,

which denotes the movement (M) of player X from the court region A to the
court region B. Similarly, the notation of the screen (SCR), which involves the
actions of two players (X and Y) in some court region A can be written as:

SCR PlayerX PlayerY CourtRegionA.

Partitioning of the court could be done in many different ways, preferably
based on expert knowledge. Regrettably, after a brief study of relevant bas-
ketball literature and after consultations with several basketball experts, we
did not come across any consistent solution of this problem. The main reason
appears to be the fact that coaches usually think of the game in the form
of playing roles (e.g. point guard, forward or center), which, in general, do
not carry sufficient information to provide universal partitioning of the court.
Therefore, we developed our own spatial court model.

To do this, we assembled a set of 34 manually defined activity templates,
which corresponded to 17 different types of offensive basketball play. Each
type of basketball offense was represented by the left and right version of the
template, since most of the plays can be performed either in original variation,
or mirrored across the larger of the court axes. The plays were taken from
appropriate basketball literature [2, 20]. We extracted absolute positions of
key elements from those templates.
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The positions of all key elements from those templates were used to divide
the court into different numbers of non-overlapping regions. To obtain region
centers and their boundaries, we applied the k-means clustering algorithm
[24] to the complete set of element positions. For comparison, we also built a
”naive” court model, which was obtained by dividing the court into the same
number of equally sized rectangular regions. This way, we built a collection of
spatial court models, which were evaluated in our wider play analysis frame-
work, regarding their influence on the overall recognition rate. For illustration,
Figure 2 shows the partition, which yields the best recognition results on our
test data, and was obtained using the k-means algorithm. Names of the re-
gions have been chosen according to the player roles, which are commonly
associated with corresponding areas of the court.

TOP_KEY

LEFT_WING

RIGHT_WING

PIVOT KEY

LEFT_
POST

LEFT_
CORNER

RIGHT_
CORNER

RIGHT_
POST

(a) (b)

Fig. 2. (a) Names of the regions, chosen with regard to the player roles. (b) Asterisks
show positions of elements (screens, moves) extracted from the 34 activity templates
and used in the process of obtaining spatial court model.

2.2.3 Detection of key elements

We decided to observe three key elements of the basketball game: starting for-
mation of the team, player motion around the court (moves) and screens. All
of these elements can be observed from trajectory data without any additional
annotations using the set of methods we call key element detectors.

Starting formation The starting formation is detected by comparing a set
of the current positions of the players Xt = {x(n)

t }N
n=1 to a set of reference

starting positions Xref = {x(n)
ref}

N
n=1 which are provided by each activity tem-

plate. N denotes number of the players in one team. The closer the current
positions are to the reference positions, the likelier it is that the formation
took place. However, those positions, which are closer to the basket usually
bear more weight in determining the formation than those farther from the
basket. The reasoning behind this is twofold. First, the players that are posi-
tioned closer to the basket have less maneuver space, since they can be easily
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blocked by the opposite team. Second, there are more court markings that can
be used for precise orientation close to the basket than farther away.

Let dn = ‖x(n)
t − x

(n)
ref‖ be the l2 distance from the n-th player to the n-th

reference position in the k-th formation and let rn = ‖x(n)
ref − xbasket‖ be the

l2 distance from that reference position to the basket. The likelihood of k-th
formation given the current set of positions Xt is then defined as

L(formation = k|Xt)
∆
=

N
∑

n=1

N (dn; 0, σd) · wn, (10)

where N (·; 0, σ) denotes a zero-mean Gaussian with variance σ2 and

wn =
N (rn; 0, σr)

N
∑

n=1
N (rn; 0, σr)

(11)

is the importance value, which determines, how much n-th reference posi-
tion contributes to the k-th formation. The reasoning behind the importance
weights (11) is as described above: accurate positioning on the reference posi-
tions that are closer to the basket is more important than the positioning on
those farther from the basket. We define the goodness of the k-th formation
by the likelihood ratio

S(formation = k)
∆
=

L(formation = k|Xt)

L(formation = k|Xref)
, (12)

where L(formation = k|Xt) is the likelihood of the k-th formation given the
current positions Xt, and L(formation = k|Xref) is the likelihood of the k-th
formation given the reference positions Xref for that formation.

The parameter σd from (10) determines the notion of proximity, i.e. it deter-
mines when a player is considered close to a certain reference position. In our
implementation we set this parameter to σd=1 meter. The parameter σr from
(11) reflects the spatial importance which is assigned to the reference positions
in a given formation with respect to their distance from the basket. In our im-
plementation, this parameter was set to σr =6.25 meters, which represents the
radius of the three points-area circle on the basketball court.

The goodness function (12) is bounded to the interval [0..1], yielding zero at
total mismatch and one at perfect match. In our experience, the set of current
positions Xt may be regarded as the k-th formation when S(formation = k)
exceeds the value of 0.85.

13



Screen. In the basketball literature, the screen is defined as a close contact
between two players [2], where ideally one player is standing still and the other
runs in his proximity. Thus a certain interaction among two players is more
likely to be interpreted as a screen if the velocity of the slower player is low
and the distance between the players is small.

Let dt be the l2 distance between the two interacting players and let vt be
the velocity of the slower of the players. The likelihood function of a screen is
defined as

L(screen|dt, vt)
∆
=N (dt; 0, σd) · N (vt; 0, σv), (13)

where N (·; 0, σ) is a zero-mean Gaussian function with variance σ2. We define
the goodness of the screen as the likelihood ratio

Sscreen
∆
=
L(screen|dt, vt)

L(screen|0, 0)
, (14)

where L(screen|dt, vt) is the likelihood of the screen given the current distance
and velocity values (dt, vt) of the interacting players and L(screen|0, 0) is the
likelihood of an ideal screen.

The proximity parameter σd in (14) is set to the value σd = 1 meter, as in
the case of formation detection. The velocity parameter σv which determines
the velocity of player which is ”still enough” is set to σv = 0.5m/s in our
implementation. In our experience an interaction between two players can be
interpreted as a screen if the value Sscreen (14) exceeds the value of 0.8.

Move. A move of a player is transcribed into semantic description simply by
outputting the appropriate symbol when player moves from one court area to
another. However, to reduce the number of symbols generated when player is
moving along the boundary between the two regions (the problem, which can
be exacerbated by trajectory noise), an additional hysteresis of 0.5 meters is
applied to the output of the transition detector. This way the transition is
observed only if player moves at least half a meter into the new region.

2.2.4 Template based activity recognition

By applying the detectors of key elements to the trajectory segment, we get a
sequence of symbols - a semantic description of the activity on the court for
that particular interval of time. For illustration, Table 1 shows the semantic
description of a segment of trajectories from Figure 3, obtained with the key
element detectors described in the previous section.
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P3

P4

P5

P2

P1

Fig. 3. Example trajectories of a ”Flex offense”. The numbers denote the players.

Table 1
Initial part of semantic description of trajectories from Figure 3. The numbers in
the parentheses explicitly state the order of symbols.

(1) M P1 RIGHT POST, (7) FORM flex1, (12) M P4 LEFT POST LEFT WING,

(2) M P2 LEFT POST, (8) M P3 LEFT POST LEFT CORNER, (13) SCR P2 P4 LEFT POST,

(3) M P3 LEFT CORNER, (9) SCR P2 P3 LEFT POST, (14) FORM flex1 inv,

(4) M P4 LEFT WING, (10) M P1 RIGHT CORNER RIGHT POST, (15) M P2 LEFT WING LEFT POST,

(5) M P5 RIGHT WING, (11) M P3 KEY LEFT POST, (16) SCR P2 P3 LEFT POST ...

Semantic description of a trajectory segment is used to compare the trajectory
segment with the activity template. The matching process is done in two steps.

• In a template, players are denoted by abstract numbers, from 1 to 5. How-
ever, these numbers bear no relation to the indexes of players in the semantic
description of the observed trajectory segment, due to the abstract nature
of activity templates. For this reason, we need to determine the relations
between players on the court and the player indexes in the activity template.
We call this process player casting.

• After the roles of individual players are obtained, we can determine, which
of the template-generated semantic descriptions is the most similar to the
trajectory-generated description.

Player casting. With player casting, we solve an important combinatorial
problem, which some researchers did not address. For example, both Intille
and Bobick [25] and Jug [18] performed this task manually. Besides solving
the obvious problem of using general activity templates on real world data,
player casting increases the robustness of the analysis process. Even if the
players are swapped during the tracking process (for example because of the
difficult tracking conditions, as described by Kristan [26]),we can still obtain
the correct results (with, of course, wrongly assigned identities), as long as
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identity swaps are not so frequent to completely blur the activity of individual
players. The player casting is also needed to address changes in team makeup
during the match. Even the actual roles of players on the court may change
between the consecutive segments, as players are trained to do this in order
to confuse their opponents.

To solve the problem of casting, we have to test 120 (5!) possible casts, and
select the permutation, which yields the smallest distance to the semantic de-
scription of the selected activity template. Casting has to be done separately
for each trajectory segment, and it has to be repeated for each of the ac-
tivity templates. For each possible permutation (cast), we first generate five
distinctive player agendas, one for each of the players. One set of agendas is
extracted from the trajectory-generated semantic descriptions, and the other
set from the template-generated semantic descriptions. This way, the origi-
nal ”combined” activity description is decomposed to five individual activity
descriptions - one for each player.

Each player agenda contains only those activities, in which the player in ques-
tion has participated. For example, starting formation is contained in all five
player agendas, while the screen is contained only in two player agendas - in
the agendas of those two players who performed the screen. Finally, each indi-
vidual player move ends up in a single player agenda. Considering these rules,
we can transform the semantic description from Table 1 to the five agendas,
as shown in Table 2.

Table 2
Five player agendas built from the semantic description in Table 1. The numbering
of agendas is consistent with player numbering in previous examples.

ag1 ag2 ag3

(1) M RIGHT POST (1) M LEFT POST (1) M LEFT CORNER

(2) FORM flex1 (2) FORM flex1 (2) FORM flex1

(3) M RIGHT CORNER RIGHT POST (3) SCR LEFT POST (3) SCR LEFT POST

(4) FORM flex1 inv ... (4) SCR LEFT POST (4) M KEY LEFT POST

(5) FORM flex1 inv (5) FORM flex1 inv

(6) M LEFT WING LEFT POST (6) SCR LEFT POST ...

(7) SCR LEFT POST...

ag4 ag5

(1) M LEFT WING (1) M RIGHT WING

(2) FORM flex1 (2) FORM flex1

(3) M LEFT POST LEFT WING (3) FORM flex1 inv...

(4) SCR LEFT POST

(5) FORM flex1 inv...

In the process of generating the player agendas, we sacrificed the explicit
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information about the inter-player temporal relations. At this point, only the
information about multi-player activity which is implicitly contained in the
encoding of screens and formations is retained.

The 120 possible player casts, one for each possible permutation of five players,
are then tested by cross-comparing five template-generated player agendas to
five trajectory-generated ones. The cross-comparison of players to roles yields
similarity matrix A = [aij ]N×N , where element aij indicates how well the i−th

player fits into the jth template role.

In our work, we use the modified Levenstein distance [27] as a similarity mea-
sure between the two sequences of symbols. The distance measure assigns a
penalty of 2 for each symbol insertion or deletion, and is normalized with the
sum of lengths of both symbol sequences. This way, the final output of cost
function is normalized to the interval [0..1], yielding zero for a perfect match
and one for at a total mismatch.

The overall cost (S) of particular player cast (permutation) is calculated as
the sum of individual cost functions (aij) for all five players.This process is
repeated for each of the 120 possible permutations – casts (C), and the per-
mutation, which yields the smallest cost function (S(Cmin)) is accepted as
the best explanation of player roles in the observed trajectory segment, when
comparing it to the chosen activity template.

S(Cmin) = min{
N

∑

i=1

aij}; j = Cl(i), l = 1 . . . 120. (15)

In our example, the similarity matrix A is

A =


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























0.22 0.81 0.66 0.77 0.59

0.45 0.32 0.99 0.14 0.87
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
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,

and the correct cast is represented as Cl = {1, 4, 2, 3, 5}, which produces the
smallest distance of S(Cl) = a11 + a24 + a32 + a43 + a55 = 1.1.

Assigning the label to the analyzed trajectory segment.After the
player casting is completed, the symbols in the trajectory-generated sequence
are updated to reflect actual player assignment, and the overall cost function
is calculated by comparing the trajectory-generated sequence to the template-
generated one, using the previously described modified Levenstein distance.
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This process, complete with the role casting, has to be done separately for
every activity template from activity database.

After the results of comparison are obtained, the observed trajectory segment
is assigned the label of the template that generated the smallest distance to
the sequence, generated from the trajectory segment. However, this is done
only if the cost is smaller then the certain threshold, which was, in our case,
set to 0.6 (see Section 3 for more details). We assume that there is no match
for the observed activity in the activity database if the distance is above this
value. As an illustration, Figure 4 shows the results of matching the trajectory
segment, manually labelled ”Flex offense” to 17 different templates, including
the ”Flex offense” template.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Player1 Player2

Player3 Player4 Player5

(a) (b) (c)

(d) (e) (f)

Fig. 4. Matching the trajectory segment, manually labeled as ”flex offense” to 17
different action templates, with ”Flex offense” template among them. (a) The cost
function after the comparison. The correct match can be clearly seen in the form of
the lowest bar. Red line represents the threshold of 0.6 (b) to (f) Ideal player paths
as defined in the ”Flex offense” template (black straight line) and successfully
matched player trajectories of four repeatedly performed ”Flex offense” activities.

2.2.5 Assessment of the team performance

The described framework for analyzing trajectory data can be used for other
tasks than just plain recognition and labeling of team activity. In particular,
since we obtain the similarity measure between the trajectory segment and
the most similar activity template (in form of modified normalized Levenstein
distance between two sequences of symbols), we can interpret it as objective
measure of team performance.
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The value of this measure is influenced by the execution of the required key
elements, the order of execution, their position on the court, and the coor-
dination between team members during the execution of the particular play.
Low values of this similarity measure indicate that all of the elements were
executed at the right places and that the players were well coordinated. High
values may indicate poor team performance, which may be attributed to mul-
tiple causes. In case of training, it could suggest that the team did not learn
or train the particular activity well enough. In the case of actual match, it
could indicate that the team is facing successful defense of the opposing team,
which manages to destroy their offensive play (and therefore the value can be
interpreted as the measure of quality of the opposing teams’ defensive tactics).
Finally, low values may suggest that the team is not playing in a organized
manner at all, either because the opponents are able to completely block their
attempts to organize activity, or because the opponents are weak enough that
the team can score even without any particular play organization.

3 Experiments and results

Our approach is general enough to be applied to any kind of (sufficiently
accurate) trajectory data. However, to test the approach, we obtained the
trajectory data using computer vision based tracking methods. We detail our
experimental setup here to document the nature of the input data, on which
our trajectory based activity analysis methodology was tested.

3.1 Experimental setup

The structure of our experimental system is shown in Figure 5. In order to per-
form trajectory analysis, we recorded a number of test videos, which included
both a real match and training-level play under a supervision of a basketball
coach. To obtain player trajectories, tracking has been performed on those
videos.

We generated the needed activity templates using our own proprietary soft-
ware (”play designer”), which provides a graphical user interface, with the
functionality similar to the board a basketball coach uses to explain their ideas
to the players. The software is able to automatically render activity templates
both to their graphical representation and to their semantic descriptions.
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Fig. 5. System overview.

3.1.1 Video acquisition and tracking

To obtain the videos of actual basketball play, we used two cameras, perma-
nently mounted to the ceiling of the sports hall, in which basketball matches
are played. Such camera setup enabled us to obtain videos with birds’ eye
view of the play, and two cameras are sufficient to cover the whole court for
the whole duration of the match. Image from one of the cameras is shown in
Figure 6.

Two sets of videos have been recorded:

• Set A: A basketball match on the national championship level, which was
used for experiments regarding the trajectory segmentation.

• Set B: A set of videos, where a team of players was repeatedly executing
three well known types of basketball offense under the supervision of the
coach, and other team was executing a passive defense (defending the basket,
without trying to start their own offense). Both videos with and without
defensive team have been recorded.

To obtain motion data, we performed operator-supervised tracking on these
sequences. We used modified color histogram based CONDENSATION algo-
rithm [26, 28] as the tracking engine, built into the user friendly graphical
interface. An operator was supervising the tracking and corrected any errors
that appeared during the tracking process. Tracking was coupled with the
appropriate calibration, which provided the mapping of image coordinates to
the real-world (court) coordinates and compensated for radial distortion, orig-
inally present in video data. The tracking yielded a measurement of positions
for all of the players in each of the video frames. Since we used PAL video
cameras, our tracking system provided trajectory data for each player with 25
samples per second. At the end of the tracking, data were smoothed using a 25
samples wide symmetric Gaussian kernel to reduce the jitter in trajectories.
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Figure 2 shows operator’s view of the tracking process. Based on our setup and
our previous research [29, 30] we estimate that the obtained player positions
contain RMS error in the range between 0.3 and 0.5 meters. Due to the nature
of the play (majority of the play takes place directly under the camera) the
error is closer to 0.3 than to 0.5 meters.

5
3

1

4

2

1

3

5

2

4

Fig. 6. Operator-supervised tracking in progress.

3.1.2 Generating activity templates

We represent expert knowledge in the form of activity templates, which have
been modeled after the conventional tools, which coaches use to present plays
to the players. The developed graphical interface (play designer) was used to
graphically place the key events on the basketball court, associate them with
individual players, and define the order and timeline of key element execution.
Complex activities (such as more complex types of basketball offense) are
represented by multiple sequences in one template, which follow one after
another. The tool is able to automatically generate the required semantic
descriptions, used in trajectory analysis. Semantic descriptions represent only
a subset of information from each activity template, as only three key elements
of the basketball play are used in the analysis process. During the rendering
of semantic descriptions, absolute placement of key elements is replaced by
court regions (given the court partitioning, as described in Section 2.2.2) and
the intervals between the elements are discarded, retaining only their order.

Figure 7 shows the spatio-temporal representation of the first sequence from
the activity template called ”Flex offense” [31]. On the left side, starting posi-
tions of the players and their ideal paths are shown. On the right, the timeline
and relative durations of every event are presented. It can be observed that
player 5 should move behind the three point line at the same time as player
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Fig. 7. Spatial representation (a) and timeline (b) for the first sequence from the
”Flex offense” template.

3 prepares the screen for player 4 and player 2 passes the ball to player 1.
Finally, after players 2, 3 and 5 performed their actions, player 4 should move
close to player 3.

3.2 Experiments on trajectory data

Several experiments have been performed to test different aspects of the pro-
posed methodology. We used two sets of trajectory data from two sets of
videos, A and B, as described before. Set A was used to evaluate the trajec-
tory segmentation method, and set B was used to evaluate the recognition of
three types of basketball offense.

3.2.1 Temporal trajectory segmentation

In the first set of experiments, we tested the performance of our trajectory
segmentation method. Trajectory set A, which was obtained from the videos
of the regular match, was used for this purpose. 40 minutes of video at 25
frames per second yielded 60700 trajectory samples for each of the 10 players
(five from each of the teams). To obtain gold standard, we manually labeled
all transitions between offensive, defensive and time-out phases, as seen from
the perspective of one of the teams. For other team, we inverted the labels
for offense and defense, while the time-out labels remained the same. These
annotations were based on our visual observations of the videos from set A.
We used the changes in ball possession to determine the exact placement of
each annotation with high degree of objectivity.

This way, each trajectory sample has been assigned one of three labels (offense,
defense, timeout). The trajectories and the labels were fed to the algorithm,
described in Section 2.1. The success rate of the described automatic segmen-
tation method has been measured as the percentage of time (which equals the
percentage of samples) in which the resulting label was consistent with the
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manual annotations.

To test the generalization capability of the method, we performed four tests.
In the first two tests, the trajectories from one team were used for training,
and the trajectories of the other team were used for testing. In the second two,
training and testing was performed on the same set of data, to get an estimate
of the upper limit of the classification rate. Table 3 shows the results.

Table 3
Results for the temporal trajectory segmentation.

Training sequence

Test sequence Team 1 Team 2

Team 1 93.53 % 90.83 %

Team 2 91.35 % 90.92 %

The model exhibited good generalization properties, regardless of the training
and testing set, as the recognition rates did not drop significantly when the
data from the opposite teams were used for training and testing. However, it
can be observed that slightly better results were obtained when the trajectories
of Team 1 were used for training, regardless of the test set. One of the likely
explanations for such result is that the manual annotations were based on the
activity of the first team. Following the basketball theory, the annotations for
the second team should be the exact inverse, since at each moment, one team
is in offense, and the other is in defense. However, in practice, there is short
period between the loss of the ball and the organized change in tactics of both
teams. Therefore, attaching the common labels to the ball possession of one
team produces a slight asymmetry in labels. Further analysis also revealed
that the model often failed in the case of time-outs, which is not surprising,
as there were relatively few training examples of this phase (only four one-
minute-long timeouts). Figure 8 shows the segmentation results on trajectory
data.

3.3 Activity recognition

Tests of the segmentation methodology on trajectories from the set A con-
firmed that the described approach could be used for automatic trajectory
segmentation. Therefore, in the rest of the experiments, we limited ourselves
to the second set of data (set B), which included manually segmented trajec-
tory sequences, obtained from the videos, which contained multiple repetitions
of three well known types of basketball offense. The data from set B contained
71 trajectory segments, of which 39 were played with and 32 without the de-
fensive team. Trajectory segments contained only the player trajectories from
one team - from the team that played the offensive role. This way, we ensured
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Fig. 8. Segmentation results: (a) Offensive phase, (b) Defensive phase, (c) Time
outs.

the consistency and density of information in the test data. If, on the other
hand, the regular league match data would be used, the systematic testing
would be impossible due to small number of repetitions and wide variety of
activities performed during the match.

Trajectory segments were matched to 34 different action templates (left and
right variants of 17 different offensive activities), which were obtained from
various sources, such as basketball literature [2], and consultation with the
local coach. Of the 34 templates available, 6 corresponded to the three types
of activities contained in the test data.

Using this set of trajectory segments resulted in 100% correct recognition - all
of the trajectory segments yielded shortest modified Levenstein distance for
the correct activity template. To further test the robustness of our approach,
we performed two additional experiments.

First, we tested the influence of spurious symbols on the recognition rate.
These symbols are almost always present in the semantic descriptions, due
to spurious detection of key elements and poorly executed player activities.
The better the opposing team, more spurious symbols will be present in the
trajectory-generated description of the observed team, as the opposing team
will be able to disrupt the execution of observed team activity. Resistance
to spurious symbols increases the usefulness of the described method in the
regular match analysis, where the organized activity is usually intermixed with
significant quantities of random activity.
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To perform this test, we added different ratios of additional symbols to the
original symbol sequences. Added symbols were randomly selected from the
symbol dictionary, and were inserted into the original description at random
positions. To compensate for effects of random draw, we repeated every exper-
iment 20 times, making in total 1420 runs (20 × 71 trajectory segments) of the
activity recognition algorithm for each chosen amount of additional symbols.
Table 4 shows the recognition results after the different amounts symbols were
added.

Table 4
Average recognition success rate when different amounts of spurious symbols were
added. Every experiment was repeated 1420 times for each percentage of the added
symbols.

Percentage of added symbols [%] 0 50 100 200 300 400 500

Recognition rate [%] 100 99.0 98.9 97.5 96.2 94.8 91.8

It can be observed that the proposed recognition procedure is extremely robust
to the added random symbols. This is due to the nature of similarity measure
used (the modified Levenstein distance) which is calculated both from the
presence of symbols and their order. By adding reasonable amounts of symbols,
the distances to all templates are increasing roughly in the same manner.
Given the nature of basketball play, there is little chance that such random
motion would correspond to any template definition of an organized play,
unless extremely short templates are used.

In the second experiment, we tested the separability of test data, using our
approach for activity recognition. This was done by cross comparing the tra-
jectory generated semantic descriptions of each of the 71 trajectory segments,
and calculating the average distance for the matched and mismatched pairs of
segments separately. This way, we obtained a confusion matrix for the three
types of basketball offense. The matrix is shown in Table 5.

Table 5
The confusion matrix - the average distance values for the three types of basketball
offense.

Class of action

Class of action 52 Flex Moving stack

52 0.3205 0.6340 0.7198

Flex 0.6340 0.4893 0.6998

Moving stack 0.7198 0.6998 0.4667

In the third experiment, we used all available templates to perform activity
recognition, and calculated average distance when comparing each segment to
the matching template and to 33 mismatched templates. Results are shown in
Table 6).
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Table 6
The confusion matrix - the cost values of comparison of test examples to templates.

Class of template

Class of action Matching template Average of 33 mismatched templates

52 0.3695 0.6442

Flex 0.3847 0.6757

Moving stack 0.5106 0.7111

The last two experiments suggest that there is a significant difference between
the distances to matching templates (or matching trajectory segments) and
the distances to mismatched templates (or mismatched trajectory segments).
This shows that our methodology for activity recognition generates feature
values, which are well separable. In our case, the recognition threshold could
be set to any value between 0.51 and 0.64 to obtain best recognition rate.

4 Conclusion and future work

We presented a two step approach to the analysis of basketball game. Our
ultimate goal is automatic segmentation of trajectory data into meaningful
play segments (offense, defense and time outs) and automatic recognition of
team activity from those segments.

We have demonstrated that by observing only the average position of all play-
ers in the team, it is possible to segment the basketball game with reasonable
accuracy. We modeled every phase as a two-component Gaussian mixture
model, with one component representing the transition to a particular phase
and the other representing the main behavior during that phase. To determine
the model parameters we applied the EM algorithm to the set of manually la-
beled trajectory data.

It was shown that the obtained model is general enough to be trained on one
team and used on another. This suggests that it could be possible to derive
and train a general basketball play model, which could be used to successfully
segment trajectories into the game phases without any tuning.

In the second part of the paper, we presented a method for the automatic
recognition of specific basketball activities. The method detects basic elements
of the basketball play, and based on the detected elements, it transforms the
trajectories into semantic descriptions of the observed team activity. The re-
sulting symbol sequences are essentially a narrative of the activity on the
court. Such approach turned out to be extremely robust with regard to the
spurious symbols in the descriptions. We demonstrated the consistent behav-
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ior of the described approach on our test database of 71 repetitions of three
types of basketball offense.

The presented approach assumes that we already have descriptions of the
activities of interest in the form of activity templates. However, there are
cases, where such approach is not entirely appropriate. If the objective is
to study the activity of the opposing team, or to obtain coarse statistics on
team behavior, it is unreasonable to assume the templates that cover all the
interesting behavior would be available. Nevertheless, the presented framework
could be extended to cover this case as well. Our method does not depend on
how the reference descriptions are obtained. In our case a graphical tool to
design activity templates was used; however, in the absence of better options,
the reference descriptions could be extracted from the trajectories as well.
This opens a possibility that an expert (coach) chooses a particular action
of interest, whose repetitions are then found automatically by the software
among all the segments from the whole match. Finally, performing such search
with each trajectory segment as template (undoubtedly a computationally
intensive task) could give us the clustering of activities, which would essentially
represent the description of common team behavior.

The future work will focus on three problems. First, in many cases during a
real match, the activity inside a particular phase is restarted (e.g. after a foul
or a rebound), and no phase change is present. Our temporal segmentation
framework does not cover the segmentation in such cases. To deal with such
scenarios, the activity recognition framework should be extended to search for
multiple activities and their temporal boundaries inside one phase.

Second, the activity recognition framework should be extended to take into the
account the importance of individual roles that players have in the observed
activity. In basketball theory, some elements of the complex activity are usually
more important than others, and some player roles are more important than
others. This is reflected in team performance, as players will put more effort in
the successful execution of critical tasks, and less effort in the exact execution
of other elements.

Finally, we anticipate that the inclusion of the information about the ball
possession should considerably improve the performance of segmentation and
recognition phase. However, with the current state of technology, such solution
would require a significant amount of manual work to obtain such data, and
does not fit well into the concept of automated analysis framework designed
to save time.
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