Recognition of Multi-Agent Activities with Petri Nets

Matej Perse, Matej Kristan, Janez Pers, Stanislav Kovacic

Fuaculty of Electrical Engineering, University of Ljubljana
Trzaska 25, 1001 Ljubljana, Slovenia
{matej.perse} Qfe.uni-lj.si

Abstract
We describe the use of Petri Nets (PNs) for

the recognition and evaluation of complex multi-
agent activities. PNs are built automatically from
the activity templates, which are often used by the
experts to encode the domain specific knowledge.
The original PN formalism is extended to handle the
propagation of evidence using the net tokens. The
presented approach was tested on several examples
of real basketball activities.

1 Introduction

Understanding of ”What is going on in the video”
has been one of the paramount challenges of the video
analysis domain for more than a decade [I]. The main
reason for this is the complexity of the natural scenes.
This is especially true in the cases when more then
one object of interest is present in the scene (multi-
agent and/or multi-object activities), as the analysis
system should be able to interpret different temporal,
spatial and logical relations among them.

There are different stochastic and deterministic
inference engines for addressing the problem of high-
level semantics, such as Bayesian Networks [2] [3],
Hidden Markov Models [4] and Stochastic Grammars.
For simple activities whose structure is known in
advance and can be easily learned from training data,
stochastic systems can be used. On the other hand,
for higher-level-activities which include temporal
combinations of events, deterministic inference seems
to be preferable.

Petri Nets have already been used for recognition
of highly-structured events [I], 5] [6]. They have proven
to be particularly suited for:

e modeling sequential and concurrent events and

their synchronization,

e handling multiple scenarios using the same PN

model,

e modeling hierarchical structure of activities, and

e modeling deterministic and stochastic inference
of event occurrences.

Our approach extends the work of Lavee et al.

[5] and Ghanem et al. [6] in several ways. First, we

ERK'2008, Portoroz, B:217-220 217

propose an automatic procedure for building Petri
Nets from activity templates. Such templates, built
using a user friendly graphical interface, can be used
in several different areas of computer vision (e.g.
video surveillance and sports analysis) to encode the
experts knowledge. Furthermore, we extend the basic
PN concept to handle evaluation of the performed
activities through the use of tokens as the carriers
of the information about mistakes in the already
observed activity. Finally, we extensively test the
proposed approach on several real examples obtained
from the sport domain.

The reminder of the paper is organized as follows:
a short introduction to the multi-player activity
structure is given in Section 2l In Section Bl we first
give a short overview of the PN framework. Next, we
present the procedure for building the PNs from an
activity template. In Sectiondlwe present recognition
results. Finally, in Section Bl we offer a conclusion and
discussion, derived from our experiments.

2 The structure of multi-agent activi-
ties

One of the key factors for the correct interpretation
of an activity is understanding of its temporal profile.
An activity is comprised of several elements/actions
(e.g. in basketball these elements are player motion,
dribbling, passing, shooting, screeming, rebounding,
team starting formation, etc.), which have to be
executed in a precise temporal order [7]. The idea
behind our approach is that it is possible to establish
the overall score and current stage of the observed
activity by evaluating how well have its elements been
performed and what where the temporal relations
among them.

3 Building the PN Activity model

Petri Nets have proven to be one of the most
useful formalisms for modeling systems containing
concurrent processes. They were used in several dif-
ferent applications for recognition and interpretation
of video data [11 5 [6].

Our automatic process for building PNs from
activity templates consists of two steps:

e First, the action chains [5], which represent
individual actions are constructed.

e Next, the imposed temporal constraints are
integrated into the PN activity model. This way
the action chains are linked together by using
the knowledge about temporal relations between
elements.

To be able to evaluate the overall performance of
the observed activity, we also derived a mechanism
that allows the propagation of information about the
activity through the network.

3.1 The Petri Net formalism

Petri Net model is graphically represented by a
directed bipartite graph (see Figure [J) in which
the two types of nodes (places P and transitions
T) are drawn as circles, and either bars or boxes,
respectively [§]. Formally, it can be described as a
6-tuple

PN ={P,T,1,0,H, M,}. (1)

The arcs of the graph are classified (with respect
to transitions) as: input arcs (I) - arrow-headed arcs
from places to transitions, output arcs (O) - arrow-
headed arcs from transitions to places, inhibitor arcs
(I) - circle-headed arcs from places to transitions.
Places can contain tokens that are drawn as black
dots within them. The state of a PN is called marking
(M), and is defined by the number of tokens in
each place. The initial PN state is called the initial
marking (My). The state of the net changes, when
one or more transitions fire. In this case the new state
(M(441) of the net is calculated as:

M1y = My + (0 = I) - By, (2)

where M) is the state of the network before
the transition is fired and FE(;) is the vector of the
transitions that fired. For further details readers are
referred to [8] and [9].

3.2 Building the PN from activity tem-
plate

Lets take a look at an activity template called
"Double Screen” which is presented in [3]. Event
hough this is one of the simplest basketball activities
one could imagine, it contains several concurrent
elements that should be performed in a specific
temporal order. To be able to define the temporal
relations between elements, we generate synthetic
trajectories using the spatio-temporal information
from the template and apply the element detectors
to those trajectories. This way we obtain the activity
timeline (Figure [I) which defines the actual time
intervals in which the elements occur.

218

By observing the starting and ending times of the
elements, we can define whether the element has to be
executed before, within or simultaneously according
to other elements from the activity.

pl 5 move

pl4 screen for 5

~—

pl 3 move

<
£
c
@
|
3]
)
©
s

Time [s]

Figure 1: The timeline for the Double screen activity
described in [3]. The lines represent the learned
temporal relations. Full lines represent relation before
and dashed lines represent relation within.

3.2.1 Defining the action chains

Following the previously developed ontologies pro-
posed by Ghanem et.al [6] and Lavee et al. [B], we
model the actions as instantaneous time fragment
represented as a three-node chains (Figure [2]):

e The first node (precondition place) represents the
preconditions that have to be meet in order for
the observed action to begin.

e The second node (end of action place) represents
the state of a finished action.

e The transition represents the logical state which
denotes that an action has or should be observed.
When it fires, the token, which represents the
state of the observed action, moves from the
precondition place to the end of action place.
The firing of the transition occurs after some
logical condition was fulfilled (i.e. execution of
some action) or due to the fact that the time
period allocated for the execution of action
has expired. To test the state of the condition
we use trajectory-based action detector. If the
transition is fired due to the expiration of the
allocated time, this means that the action has
not been observed and has to be adequately
penalized in the final activity score.

O—1—0

action precondition action ended
meet

Figure 2: A three-node action chain.

3.2.2 Connecting the action chains into a PN

Once the action chains are created, they are
connected into a mnetwork using the knowledge
about temporal relations between elements that
were obtained from the timeline (Figure [). For
this purpose purely logical, null-delay split and join
transitions (Figure B]) are added to the network.
Additionally, dummy nodes that represent the start
and the end of an activity are added.

pl5 move 1.3
O
sta!'t_of pl4 screen end of
activity pl4 move for5 0.3 pl4 move activity
0.0 pI3 move_ (pl3 screen for 4

Oaging®

Figure 3: Petri Net model automatically built
from Double Screen template. Black dots inside
places represent tokens which define the current
state/marking of the net. The numbers above tokens
represent the accumulated penalty. Filled rectangles
denote an observed activity, and empty rectangles
denote the activity that was not observed yet. Gray
elements denote purely logical elements.

3.3 The evaluation scheme

The original PN framework has evolved into
several different high-level formalisms among which
the most widely used are Coloured Petri Nets and
Generalized Stochastic Petri Nets. To obtain the
knowledge about how well the observed activity was
performed, we follow the idea of the Coloured PNs
framework [10], where the tokens are used as carriers
of information. Usually, the tokens represent the
information about the properties of objects which are
part of the modeled system. In our implementation,
the tokens are used to carry the information about
penalty, which denotes the errors detected in the
execution of the already observed activity. The tokens
accumulate the information about the overall activity
penalty. This penalty is updated every time when
a transition is fired. It can be calculated in three
different ways depending on the circumstances of a
firing:

e If the transition fires when the action precon-

ditions are meet, the penalty is calculated as

Xiow = X4q+{1— 5}, where S; is the detector
response for action i and X!, is the previous
penalty of the token 3.

o If the transition fires too early, the penalty is
calculated as X!., = X, + min{l — S; +
Xtime, 0}, where Xyjme is the temporal penalty
because the element was performed too early. In
our implementation the value of the temporal
penalty is set to 0.2.

219

e If the action is not observed at all or it is
observed after the predefined temporal interval,
the penalty is calculated as X!., = X!, +
Xnot_observed; where Xnot_observed is the penalty
for the action not being observed. In our
implementation the value for this penalty is set
to 1.

The logical split and logical join transitions are
used to propagate and collect the token information.
When n concurrent tokens (X¢,;) are joined into
a single token (X!.,) the new token penalty is
calculated as a sum of penalties of all the incoming

tokens X!, = > {X};ld}. In order to be able to
i=1

compare the results from different templates, the
total accumulated penalty is normalized with the
number of actions in the PN.

4 Experimental results

To test the performance of our activity evaluation
scheme, we acquired trajectory segments of 40
basketball activities. All the activities belonged to
the same type. However, they were performed in
such manner that they ended in different stages
of execution. The first 10 examples ended shortly
after the start of activity and the last 10 were
performed completely. To obtain the trajectory
segments, we performed supervised tracking using
a probabilistic color-based tracking algorithm [I1].
Since the evaluation procedure requires that the
roles of players are known (i.e. we have to know
which trajectory represents which player role in
the template), we cast players into their respective
roles using the method described in [12]. The
experiments were carried out using a modified version
of framework presented in [I3].

Our goal was to determine if it is possible
to establish the type of the activity that team
performed, solely from the final activity penalty.
Additionally, we wanted to establish if it is possible
to correctly determine the stage at which the activity
ended. To do that, we have built four templates
representing all activities up to a certain stage of
the appropriate basketball play (Slovanl-Slovan4).
Additionally, three templates obtained from the
basketball literature (52, flex and motion) were
used in the evaluation process. Table [shows
the average penalty of the ten activities belonging
to the same length, when they are evaluated
using the PNs built from different templates.
Additionally, the videos demonstrating the results
of the evaluation procedure are available online at
http://vision.fe.uni-1j.si/research/SportA /PN.html.

In Table[I] it can seen that the smallest penalties
were obtained in cases when both the type and
stage of template and observed activity matched.
Furthermore, we can observe that even when the

http://vision.fe.uni-lj.si/research/SportA/PN.html

Slovanl | Slovan2 | Slovan3 | Slovan4

Slovanl | 0.1400 | 0.3184 | 0.3997 | 0.4450
Slovan2 0.3523 | 0.2043 0.2766 | 0.3964
Slovan3 0.6155 0.5291 | 0.2354 | 0.3509
Slovan4 0.7317 | 0.6495 | 0.3968 | 0.3368
52 0.8757 | 0.8485 | 0.8448 | 0.7876
flex 0.9394 | 0.9120 | 0.7996 | 0.8068
motion 0.9507 | 0.9426 | 0.9522 | 0.9333

Table 1: Average activity penalty when evaluating
activities using PNs built from activity templates of
different types. The smallest penalty is displayed in
bold.

stages of the template and activity mismatched,
the obtained penalty is smaller than in cases when
the types mismatched. This would suggest that the
proposed method can be used for activity recognition
regardless of the stage at which the activity was
concluded. Additionally, the results suggest that
by using several templates of different lengths it
is possible to determine the correct stage of the
observed activity since the penalty is higher in cases
when the difference in stages is higher.

5 Conclusion and future work

An approach for automatic evaluation of complex
multi-agent activities with Petri Nets was presented.
The PNs were built automatically from the activity
templates. The building process is comprised from
two stages. In the first, three-node chains (two places
and one transition) are built for each action. In
the second stage, the action chains are connected
together so that they encode the complex temporal
relations between the actions. In order to evaluate
how well were individual actions performed, we
applied the trajectory-based action detectors to each
transition which represents an action. To obtain the
knowledge about the overall activity, a method, which
allows the propagation of information about activity
performance, was developed.

The obtained experimental results suggest that
the presented method can be used to recognize the
type and the length of the observed activity and to
evaluate how well it was performed according to the
activity template.

In our current implementation the maximum
durations of actions were set manually and were
equal for all actions (60 frames). This is a potential
weakness, since obviously actions have different
durations. Therefore, the future work will focus on
extending the current method to handle different
durations of elements. Furthermore, the automatic
learning of temporal intervals and the stochastic
modeling of these intervals should be introduced to
further improve the robustness of the method.

220

References

[1] C. Castel, L. Chaudron, and C. Tessier. What
is going on? A high level interpretation of
sequences of images. In Proc. of the Workshop on
Conceptual Descriptions from Images (ECCYV,
96), pages 13-27, 1996.

[2] S. S. Intille and A. F. Bobick. Recognizing
planned, multiperson action. Computer Vision
and Image Understanding: CVIU, 81(3):414-
445, 2001.

[3] M. Perse, J. Pers, M. Kristan, and S. Kovacic.
Automatic evaluation of organized basketball
activity. In CVWW’ 07, St. Lambrecht, Austria,
pages 11-18, February 2007.

[4] T.V. Duong, HH. Bui, D.Q. Phung, and
S. Venkatesh. Activity Recognition and Ab-
normality Detection with the Switching Hidden
Semi-Markov Model. In CVPR ’05: Proceedings
of, pages 838-845, 2005.

[5] G. Lavee, A. Borzin, E. Rivlin, and M. Rudzsky.
Building Petri Nets from Video Event Ontolo-
gies. In ISVC07, pages 442-451, 2007.

[6] N.M. Ghanem, D.F. DeMenthon, D. Doermann,
and L.S. Davis. Representation and Recognition
of Events in Surveillance Video Using Petri Nets.
In FEventVideo04, pages 112-120, 2004.

[7] J. Kresse and R. Jablonski. The Complete Book
of Man-To-Man Offense. Coaches Choice, 2nd
edition, 2004.

[8] M. Marsan, G. Balbo, G. Conte, S. Donatelli,
and G. Franceschinis. Modelling with General-
ized Stochastic Petri Nets. John Wiley and Sons,
1998.

[9] Peter J. Haas. Stochastic Petri Nets - Modelling,
Stability, Simulation. Springer Series in
Operations Research and Financial Engineering,
2002.

[10] Kurt Jensen. Coloured Petri Nets: Basic
Concepts, Analysis Methods and Practical Use,
volume 1. Springer-Verlang, Berlin, 1997.

[11] M. Kristan, J. Pers, M. Perse, M. Bon, and
S. Kovaci¢. Multiple interacting targets tracking
with application to team sports. In ISPA 05,
pages 322-327, September 2005.

[12] M. Perse, M. Kristan, J. Pers, G. Vuckovie¢,
and S. Kovaci¢. A trajectory-based analysis of
coordinated team activity in a basketball game.
CVIU,In Press, March 2008.

[13] G. Musi¢, T. Loscher, and D. Gradisar. An open
Petri net modelling and analysis environment
in Matlab. In I8M International Mediterranean
Modelling Multiconference 2006, pages 123-128,
2006.

