
Technical Report

MACHINE
VISION
LABORATORY

MVL Lab5:
Multi-modal Indoor Person

Localization Dataset

Rok Mandeljc, Stanislav Kovačič, Matej Kristan,
Janez Perš

MVL Technical Report Series FE–LSV–02/12
Machine Vision Laboratory December 2012
University of Ljubljana
Faculty of Electrical Engineering
Tržaška 25
SI-1000 Ljubljana
Slovenia

Copyright © 2012, MVL

Technical Report FE–LSV–02/12

MVL Lab5:
Multi-modal Indoor Person Localization

Dataset

Rok Mandeljc, Stanislav Kovačič, Matej Kristan, Janez Perš

rok.mandeljc@fe.uni-lj.si

December 25, 2012

Abstract: This technical report describes MVL Lab5, a multi-modal indoor per-
son localization dataset. The dataset contains a sequence of video frames obtained
from four calibrated and time-synchronized video cameras and location event data
stream from a commercially-available radio-based localization system. The sce-
nario involves five individuals walking around a realistically cluttered room. Pro-
vided calibration data and ground truth annotations enable evaluation of person
detection, localization and identification approaches. These can be either purely
computer-vision based, or based on fusion of video and radio information. This
document is intended as the primary documentation source for the dataset, pre-
senting its availability, acquisition procedure, and organization. The structure and
format of data is described in detail, along with documentation for bundled Matlab
code and examples of its use.

Contents
1 Introduction 2

2 Availability 2

3 Acquisition Procedure 3
3.1 Scenario . 5
3.2 Camera Calibration . 5

4 Data and Format 6
4.1 Video Frames . 6
4.2 Camera Calibration Data . 6

4.2.1 Calibration data for undistorted video frames 7
4.2.2 Calibration data for original video frames 8

4.3 Ground-truth Annotations . 8
4.4 Timestamps . 9
4.5 Events from the Ubisense System 9

1

mailto:rok.mandeljc@fe.uni-lj.si

5 Matlab Code 10
5.1 External Dependencies . 10
5.2 Timestamp Database Reader . 10
5.3 Ground Truth Database Reader . 11
5.4 Ubisense Database Reader . 11
5.5 Localization System Evaluation Framework 12
5.6 Room Configuration Code . 14
5.7 Point Reprojection on Customly-undistorted Images 15

6 Use in Our Papers 16

7 Conclusion 16

References 17

1 Introduction
This technical report describes MVL Lab5, a multi-modal indoor person localization
dataset, which was captured as part of our work on multi-modal person detection, lo-
calization and identification [1, 2]. The dataset was captured using four calibrated and
time-synchronized video cameras and Ubisense localization system [3], which is based
on Ultra-Wideband radio technology. A 6.5-minute sequence involving five individu-
als walking around a realistically cluttered room was captured and manually annotated.
The main part of dataset are undistorted down-scaled (512×384) video frames and lo-
cation events data from radio-based system, along with calibration data and ground-
truth annotations. In addition, full-sized (2048×1536) undistorted and original video
frames are also provided. At the time of writing, this is the first publicly-available
dataset that comprises both video frames from multiple calibrated views and location
events from a radio-based localization system. We hope it will prove useful to other
researchers in their work, primarily in the field of person detection, identification and
tracking, but also possibly in other fields.

The remainder of this report is structured as follows. In Section 2, we provide
information on the dataset’s availability, such as terms of use and download location.
The dataset’s acquisition procedure, scenario and camera calibration procedure are de-
tailed in Section 3. Section 4 provides description of data and its format, required for
cases when one does not wish to use bundled Matlab code. The latter is described in
Section 5 in form of use examples, which should point the reader to the most rele-
vant functions. Finally, we briefly provide some details regarding use of dataset in our
papers (Section 6) and conclude the report in Section 7.

2 Availability
The dataset is provided free of charge for academic and non-commercial use, and the
bundled Matlab code is provided under GPLv2 license1. If you use any part of the
dataset, please cite the paper [1].

The primary download address for the dataset is the authors’ web site [4]. Due to
its size, we broke the dataset into several archives, so that users can download the ones

1http://www.gnu.org/licenses/gpl-2.0.html

2

http://www.gnu.org/licenses/gpl-2.0.html

are interested in. All archives are compressed using 7-Zip2, and larger archives were
further split into 500 MB parts.

Table 1: Archives that make up the dataset, their compressed and uncompressed size,
and their content. Large archives have been split into 500 MB parts. Note that down-
scaled video frames are considered to be the main part of this dataset, at least as far
as task of person detection, localization and identification is concerned.

File(s) Compressed Uncompressed Contents
data.7z 47.1 MB 55.8 MB calibration data, ground truth anno-

tations, timestamps and data from
radio-based system (main)

frames4.7z.XYZ 1.1 GB 1.6 GB undistorted frames, down-scaled to
resolution of 512×384 (main)

frames.7z.XYZ 9.2 GB 12.7 GB undistorted frames at original reso-
lution of 2048×1536 (optional)

source.7z.XYZ 6.8 GB 10.6 GB original frames at resolution of
2048×1536 (optional)

code.7z 22.3 kB 114.3 kB bundled Matlab code (optional)

The list of archives and their contents is given in Table 1. One would likely want to
download at least undistorted down-scaled frames, which are considered the main part
of this dataset, the archive containing calibration, ground truth and data stream from
radio-based system and, optionally, bundled Matlab code for quick start and reference.
For description of data and its format, see Section 4.

3 Acquisition Procedure
The dataset was acquired using four Ubisense sensors3 and four Axis P1346 IP cam-
eras4, which were placed into corners of a 8.0×7.5 m room (Figure 1), at height 2.2 m.
The views from cameras are shown in Figure 2. The room represents a realistically clut-
tered indoor environment, which is challenging both for radio-based and camera-based
person localization. On one hand, difficulties in accurate and reliable camera-based
position estimation arise due to occlusions of individuals, both among themselves and
by inanimate objects, such as office furniture. On the other hand, the presence of radio-
reflective metallic surfaces, in conjunction with obstacles, leads to multipath-related
problems in radio-based localization.

Cameras and radio localization system were time-synchronized using a Network
Time Protocol (NTP) server. Video from cameras was streamed to two laptops running
Windows; we used Axis Media Control5 for streaming video at resolution 2048×1536
and 20 frames-per-second, using H.264 video codec and ASF container. Location
events from the Ubisense system were captured using their On-The-Wire protocol and
stored in a file together with the timestamp of their occurrence.

We first converted the obtained video files to a container with a fixed frame rate
(AVI), using ffmpeg6. Then, since their recording did not start simultaneously, we

2http://www.7-zip.org/
3http://www.ubisense.net/en/resources/factsheets/

series-7000-ip-sensors.html
4http://www.axis.com/products/cam_p1346
5http://www.axis.com/techsup/software/amc/index.htm
6http://ffmpeg.org/

3

http://www.7-zip.org/
http://www.ubisense.net/en/resources/factsheets/series-7000-ip-sensors.html
http://www.ubisense.net/en/resources/factsheets/series-7000-ip-sensors.html
http://www.axis.com/products/cam_p1346
http://www.axis.com/techsup/software/amc/index.htm
http://ffmpeg.org/

Figure 1: Top view of the room with ground-truth trajectories of the five individuals.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

8

#1

#2

#3

#4

x
[m

]

y [m]

#1 #2 #3 #4 #5

Figure 2: The views from all four cameras. Original images are shown in top row. We
use images with lens distortion calibrated and corrected, as shown in the bottom row.

manually synchronized them with the help of timestamps printed on top of the frames.
Afterwards, we extracted 7840 video frames from time-aligned videos, again using
ffmpeg.

To enable association between Ubisense radio events and individual frames, we
obtained timestamp values printed on top of the extracted frames. We read the times-
tamp string using template-based OCR and converted it to Unix epoch with fractional
milliseconds. After obtaining timestamps from all four cameras, we computed their
median as the timestamp value for a four-view frame.

This way, we also verified the alignment of videos. We computed the deviation of
four per-camera timestamps for a frame from their median; we found the mean and
standard deviation of the differences across all 7840 four-view frames to be 0.0171 and
0.0182 seconds, respectively. Furthermore, we computed the difference between the
maximal and minimal per-view timestamp values for a frame; the mean and standard
deviation across all 7840 frames was 0.0544 and 0.0293 seconds, respectively.

Once the frames were undistorted and calibrated (Section 3.2), we manually anno-
tated ground truth positions of individuals in the room, by clicking on their heads in
each view and, using calibration information, reconstructing their locations.

4

Figure 3: Participating individuals.

#1 #2#3

#4

#5

3.1 Scenario
The scenario of the dataset involves five people (Figure 3), equipped with radio tags,
walking around the room. At frame #231, individuals begin to enter the room, and by
frame #551, all five of them are inside. After walking around for roughly two minutes,
they begin to leave at frame #2861. By frame #3211, everyone has left the room and
additional lights have been turned on, changing the illumination. Individuals begin to
re-enter the room at frame #3481, and by #3721 everyone is inside again. After walking
around for 200 seconds, people begin to remove their radio tags at frame #7761 and
then proceed to leave the room. The whole sequence amounts to about 6.5 minutes.
The annotated trajectories of individuals are shown in Figure 1.

3.2 Camera Calibration
Our cameras were fitted with wide-angle lenses, which introduce quite significant dis-
tortion, as seen on Figure 2. Therefore, we first calibrated lens distortion, using Da-
vide Scaramuzza’s Omnidirectional Camera Calibration Toolbox for Matlab (OCam-
Calib) [5]7. For calibration, we used five images of a calibration checkerboard, which
had 20×20 mm squares arranged in an 11×7 pattern.

After lens distortion has been calibrated, we undistorted both images of calibra-
tion pattern and extracted video frames. For undistortion, we used C/C++ functions
provided by OCamCalib toolbox8 and OpenCV’s remap function with bilinear interpo-
lation and black border fill. The used values of Fc parameter for undistortion are listed
in Table 2.

From the undistorted images of calibration pattern, we estimated the intrinsic pa-
rameters using Camera Calibration Toolbox for Matlab [6] by Jean-Yves Bouguet.
Then, we took an undistorted frame from each camera and manually annotated points
with known 3-D coordinates; this way, we obtained points for calibration of extrinsic
parameters. We again used Camera Calibration Toolbox for Matlab, which provides
a function for estimation of extrinsic parameters from known intrinsic parameters and

7https://sites.google.com/site/scarabotix/ocamcalib-toolbox
8In function create_perspecive_undistortion_LUT() we changed the values of Nxc and

Nyc from the half of image width and height to the values of xc and yc provided by the model.

5

https://sites.google.com/site/scarabotix/ocamcalib-toolbox

Table 2: Fc values that were used for image undistortion.

Camera Fc value
1 1.350
2 1.275
3 1.250
4 1.300

calibration points. This resulted in fully-calibrated camera model, which allows pro-
jection of 3-D points in the image plane.

For the sake of completeness, we also distorted the image coordinates of annotated
points using the lens distortion model, thus effectively projecting them into original
images. This enables their use in case when one wishes to use customly-undistorted
frames instead of ones provided by the dataset.

After calibration, we took undistorted video frames and scaled them down by factor
of four, using convert utility from ImageMagick9. This resulted in a set of undistorted
down-scaled video frames, which are, due to favorable compromise between size and
resolution, considered to be the main part of the dataset.

4 Data and Format
This section describes the data and its format. Most of it can be read using Matlab
and bundled Matlab code, but this section should enable reading and parsing in other
languages, for example C, as well. We use C types (e.g. double, float, int32) to denote
the type of variables stored in binary files. Note that in binary files, little-endian format
is used for storing multi-byte types.

4.1 Video Frames
The dataset provides three set of video frames:

• original (source) frames (2048×1536), located in Data/Source directory.

• undistorted frames (2048×1536), located in Data/Frames directory.

• down-sampled undistorted frames (512×384), located in Data/Frames4 direc-
tory.

The directory for each of above-mentioned sets contains one directory per camera,
each containing JPEG images corresponding to frames. The frames’ filename for-
mat is therefore Camera$C/$F.jpg, with C = 1 . . . 4 being camera number and F =
1 . . . 7840 being frame number.

4.2 Camera Calibration Data
Camera calibration data for the dataset is stored in Data/Calibration directory. It
contains one directory per camera, each containing the following files that contain cal-
ibration data for undistorted video frames:

9http://www.imagemagick.org

6

http://www.imagemagick.org

• calibration.mat: a Matlab file containing calibrated camera model.

• calibration.xml: an XML file containing calibrated camera model.

• calibration.yml: a YAML file containing calibrated camera model.

• image.jpg: an undistorted video frame from the camera.

• mask.png: a mask of valid pixels in an undistorted frame.

• extrinsic-points.mat: a Matlab file containing points from which extrinsic
parameters were estimated.

• intrinsics-checkerboard: directory containing undistorted frames with checker-
board pattern, from which intrinsics of camera model were estimated.

Additionally, original directory contains calibration data for working with origi-
nal (distorted) video frames.

4.2.1 Calibration data for undistorted video frames

Calibration for undistorted frames is provided as a Matlab file, calibration.mat. It
contains intrinsic and extrinsic parameters of a camera model used by [6] to 3-D project
points to an image plane (for an example, see their project_points3() function):

• f: a 2×1 vector that contains focal length (in pixels).

• c: a 2×1 vector that contains principal point coordinates.

• k: a 5×1 vector that contains values of image distortion coefficients10.

• alpha: the value of skew coefficient.

• om: a 3×1 rotation vector, associated with R via Rodriguez formula.

• R: a 3×3 rotation matrix.

• T: a 3×1 translation vector.

For convenience, camera calibration is also provided in the format used by OpenCV,
so that its projectPoints() function can be used to project 3-D points to an image
plane. Calibration is stored in an XML file, calibration.xml, and a YAML file,
calibration.yml, both of which can be read using OpenCV’s FileStorage, and con-
tain the following data:

• cameraMatrix: camera matrix, encompassing intrinsic parameters.

• distCoeffs: a vector containing distortion coefficients. Since zero distortion
coefficients are assumed, an empty vector is stored.

• rvec: rotation vector.

• tvec: translation vector.
10No distortion is assumed for already-undistorted frames, hence all values are set to 0.

7

The image, image.jpg is a sample undistorted frame from the camera, and mask.png

is a mask of valid pixels in an undistorted frame. Directory intrinsics-checkerboard

contains undistorted images of calibration checkerboard, which were used to estimate
intrinsic parameters. Matlab file extrinsic-points.mat containins a 5×P array of
P calibration points that were used to estimate extrinsic parameters. Each point entry
consists of (X,Y, Z, y, x), where the first three are coordinates in the room, whereas
the last two are coordinates in the image plane.

Note that calibration data is provided for full-sized undistorted image frames, which
should be taken into account when using it with down-scaled undistorted frames.

4.2.2 Calibration data for original video frames

For the sake of completeness, we also provide calibration data for original, undistorted
video frames. This allows user to work either with original video frames, or use differ-
ent undistortion parameters (e.g. resulting in a different level of “zoom” in undistorted
images, which is governed by Fc parameter in OCamCalib’s undistortion functions).
The data is stored in original directory.

The image, image.jpg is a sample original frame from the camera, and mask.png

is a mask of valid pixels in an original frame. Directory intrinsics-checkerboard

contains images of checkerboard pattern that were used to calibrate lens distortion us-
ing OCamCalib toolbox. File ocam_calib.txt contains the resulting camera model,
which can be used to undistort frames. Matlab file extrinsic-points.mat containins
a 5×P array of P calibration points that were back-projected from undistorted frames
into original frames. Each point entry consists of (X,Y, Z, y, x), where the first three
are coordinates in the room, whereas the last two are coordinates in the image plane.
Using this data, original frames can be undistorted, and calibration points can be pro-
jected into new undistorted frames using appropriate transformation.

4.3 Ground-truth Annotations
For each frame, 3-D coordinates, expressed in the room coordinate system, are pro-
vided for each person. For people that are not present in a room at a given moment,
their coordinates are set to∞. The ground truth annotations are stored in a N ×D×F
array, where N is number of people (five), D is number of dimensions (three) and F is
number of frames (7840).

The annotations are provided in two forms, both containing the same array:

• a Matlab data file: Data/GroundTruth/GroundTruth.mat

• a raw binary file: Data/GroundTruth/GroundTruth.bin

In the binary file, N , D and F are stored as three uint32 values, followed by the
array of float values. Because the array is directly exported from Matlab, the values are
stored in the following order: X-coordinates for all people in 1st frame, Y-coordinates
for all people in 1st frame, Z-coordinates for all people in 1st frame, X-coordinates for
all people in 2nd frame, and so on.

The INI file (config.ini) provides additional metadata that is used by the bundled
Matlab code (Section 5.3).

8

4.4 Timestamps
Timestamps are primarily used for association of Ubisense events to frames. Video
cameras were set to print their timestaps on top of the video frames; the printed strings
were then read from undistorted frames using template-based OCR, and the median of
values from all four cameras were taken. This way, the dataset provides a timestamp
value corresponding to each provided video frame.

The timestamp data is located in Data/Timestamp. Timestamps are stored as frac-
tional Unix epoch values in a binary file, timestamp.bin, in the form of a double array
that spans the whole file. Number of stored values therefore equals the size of binary
file divided by eight, and corresponds to the number of frames in the dataset (7840).
The first stored value corresponds to first frame, and so on.

The INI file (config.ini) provides additional metadata that is used by the bundled
Matlab code (Section 5.2).

4.5 Events from the Ubisense System
The data for Ubisense localization system is located in Data/Ubisense. The captured
data stream is stored in a binary file, ubisense.bin, which contains sequentially-stored
records about Ubisense location events. Each record consists of the following fields:

• timestamp (double): event’s timestamp

• tag ID (int32): tag identifier

• timeslot (int32): time slot at which the event occurred (system’s property)

• x (double): x coordinate (in meters)

• y (double): y coordinate (in meters)

• z (double): z coordinate (in meters)

• gdop (double): geometrical dilution of precision

• error (double): estimated localization error (as given by the system)

The most important fields are timestamp, which can be used to associate the event with
video frame (e.g. by searching for frame with the closest timestamp), tag identifier,
which is used to identify tags, and coordinates. The mapping between tag identifiers
and ground truth annotations is given in Table 3.

The INI file (config.ini) provides additional metadata that is used by the bundled
Matlab code (Section 5.4).

Table 3: Mapping between Ubisense tag identifiers and ground truth annotations (per-
son numbers).

Person Name Tag ID (integer value) Tag ID (human-readable string)
1 Dana 335574327 020-000-117-055
2 Janez 335574368 020-000-117-096
3 Mitja 335574326 020-000-117-054
4 Marko 335574403 020-000-117-131
5 Rok 335574329 020-000-117-057

9

5 Matlab Code
The dataset comes with bundled Matlab code, which is provided under GPLv2 license.
As it is part of the first author’s PhD work, its functions are unimaginatively prefixed
with his name in order to avoid potential namespace clashes. The functions and classes
are self-documented, therefore this section does not provide a comprehensive refer-
ence. Instead, it aims to direct the reader to the most relevant functions by giving
examples of their use.

The code encompasses reader classes for provided timestamp data (Section 5.2),
ground truth annotations (Section 5.3) and radio location events data (Section 5.4);
in combination with Section 4, they can also serve as reference parser implementa-
tions. Additionally, code for localization system evaluation framework is provided
(Section 5.5), and its use is demonstrated on the case of radio-based system. Finally,
we also included functions for generating configuration for occupancy-map-like al-
gorithms (Section 5.6), which demonstrate the use of provided calibration data, and
convenience functions for distorting/undistorting points with the calibrated lens model
(Section 5.7).

5.1 External Dependencies
The code presented in the following sections requires the following publicly-available
functions to be in path:

• ini2struct.m11: INI file parser

• isabsolute.m12: verifies whether a given path is absolute

Additional dependencies are listed in sections where they are applicable.

5.2 Timestamp Database Reader
The TimestampDatabase class enables retrieval of stored timestamp values and frame
number to timestamp conversion. It is primarily intended to be used by radio-event
reader class (Section 5.4) to associate the radio-based location events with individual
frames, but can also be used on its own, as shown by the following code snippet:

% Create TimestampDatabase object, using the supplied metadata
timestamp = TimestampDatabase('Data/Timestamp/config.ini');

% Query for the frame range
[startFrame, endFrame] = timestamp.get_frame_range()

% Get timestamp for frame 5000:
ts = timestamp.get_timestamp(5000)

% Get timestamps for a range of frames:
ts = timestamp.get_timestamp(5000:5010)

% Apply date and time offset correction. For technical reasons,
% the clocks of computers that were used for recording data were
% not set to the actual data. The difference can be corrected

11http://www.mathworks.com/matlabcentral/fileexchange/17177-ini2struct
12http://en.verysource.com/code/1904001_1/isabsolute.m.html

10

http://www.mathworks.com/matlabcentral/fileexchange/17177-ini2struct
http://en.verysource.com/code/1904001_1/isabsolute.m.html

% using supplied metadata. Note that is for display purposes only;
% for data retrieval, raw timestamps should be used
ts = timestamp.get_timestamp(5000, true)

% Get time string for a frame, using specified format:
ts = timestamp.get_timestring(5000, 'yyyy-mm-dd HH:MM:SS.FFF')

% Time string with corrected time offset. The actual recording date
% was 2011/11/11, but computers' clocks were set to 2010/04/01. Also,
% raw timestamps are in UTC, whereas corrected time stamps are in
% (dataset's) local time
ts = timestamp.get_timestring(5000, 'yyyy-mm-dd HH:MM:SS.FFF', true)

5.3 Ground Truth Database Reader
The GroundTruthDatabase class enables retrieval of stored ground-truth positions.
These can be obtained for one or more individuals in one or more frames, as shown
by the following code snippet:

% Create GroundTruthDatabase object, using the supplied metadata
gt = GroundTruthDatabase('Data/GroundTruth/config.ini');

% Query for frame range
[startFrame, endFrame] = gt.get_frame_range()

% Get number of people; can also be obtained by looking at
% public property 'people'
numPeople = gt.get_num_people()

% Get ground truth position for Person #4 in Frame #5000:
data = gt.get_ground_truth(5000, 4)

% Get ground truth positions for Persons 1 and 3 in Frames #5000
% and #5001:
data = gt.get_ground_truth([5000,5001], [1, 3])

5.4 Ubisense Database Reader
The UbisenseDatabase class provides access to stored location events from the Ubisense
radio-based localization system. It allows retrieval of all stored events for a single per-
son (tag ID), or retrieval of an event for a single person at the specified time (or frame).
Because a location event might not be available exactly at the specified time instant,
the closest event is returned; depending on the parameters, this can be the closest pre-
vious event (zero-order-hold behavior), closest next event, or closest event in the next
direction. Therefore, same location event might be returned for several frames. The
typical use of the UbisenseDatabase class is illustrated by the following code snippet:

% Create UbisenseDatabase object, using the supplied metadata
ubisense = UbisenseDatabase('Data/Ubisense/config.ini');

% The object has three public properties:
% - timestamp = TimestampDatabase object
% - people = cell array of individuals' names
% - tags = cell array of ids for tags that individuals wear

11

% Convert tag id for Person 1 from string to integer
id = ubisense.get_tag_id_from_string(ubisense.tags{1})

% Get all location events for Person 1, using obtained integer tag id
data = ubisense.get_events(id)

% We can also use string tag id directly
data = ubisense.get_events(ubisense.tags{1})

% Get the location event for person 4 at frame 5000, using
% zero-order-hold behavior (get closest previous event).
% Getting event by frame number is equivalent to translating
% frame number to timestamp using TimestampDatabase and using
% get_event_by_timestamp() function.
data = ubisense.get_event_by_frame(ubisense.tags{4}, 5000)

% Twelve frames later, we still get the same event, due to
% slower refresh frequency of the radio-based system.
data = ubisense.get_event_by_frame(ubisense.tags{4}, 5012)

% Change of event
data = ubisense.get_event_by_frame(ubisense.tags{4}, 5013)

% Compare with the behavior when using 'closest' parameter
% instead of (default) 'prev':
data = ubisense.get_event_by_frame(ubisense.tags{4}, 5000, 'closest')
data = ubisense.get_event_by_frame(ubisense.tags{4}, 5012, 'closest')
data = ubisense.get_event_by_frame(ubisense.tags{4}, 5013, 'closest')

5.5 Localization System Evaluation Framework
The bundled Matlab code also provides the framework for localization system eval-
uation, which is based on methodology and metrics from [1, Section 5]. The frame-
work consists of two sets of functions, prefixed with rok_evaluation_anonymous_ and
rok_evaluation_full_; the former provides framework for evaluation of anonymous
detection and localization, whereas the latter provides framework for evaluation of
identification, detection and localization.

Framework operates on the premise that at each time instant, a structure describ-
ing ground-truth annotations and a structure describing detection hypotheses are pro-
vided. In the examples below, we illustrate the use of the framework for evaluation
of radio-based localization; this essentially replicates results for radio-based system,
found in [1, Section 6.2 and 6.4].

The framework relies on external implementation of Munkres-Kuhn algorithm (Hun-
garian method) [7], Hungarian.m13, which should be made available in the path.

The ground-truth annotations wrapper function, rok_ground_truth_get_points(),
which we use in the code example below, requires metadata to be provided by a con-
figuration file. Therefore, create a file called room-config.ini with the following
content:

room-config.ini: Room configuration file

13http://www.mathworks.com/matlabcentral/fileexchange/
11609-hungarian-algorithm

12

http://www.mathworks.com/matlabcentral/fileexchange/11609-hungarian-algorithm
http://www.mathworks.com/matlabcentral/fileexchange/11609-hungarian-algorithm

Room dimensions (x1, y1, x2, y2)
area = [0.00, 0.00, 8.00, 7.50]

Cell size and stride
cell_size = [0.50, 0.50]
cell_stride = [0.25, 0.25]

The code below evaluates anonymous detection and localization performance of
radio-based system, using Metric A and Metric B from [1, Section 5.1]. The obtained
results should be the same as those reported in [1, Section 6.2].

% Create room configuration, which is needed by wrapper function
% for ground truth points
room = rok_room_create('room-config.ini');

% Load ground truth points
groundTruth = GroundTruthDatabase('Data/GroundTruth/config.ini');
numIds = groundTruth.get_num_people();

% Load Ubisense data
ubisense = UbisenseDatabase('Data/Ubisense/config.ini');

% Initialize evaluation structures
metricA = rok_evaluation_anonymous_initialize(numIds);
metricB = rok_evaluation_anonymous_initialize(numIds);

for frame = 551:2861
% Get detections; this wrapper function returns structured
% required by evaluation framework's functions
detections = rok_ubisense_get_detections(ubisense, frame);

% Get ground truth points; this wrapper function returns structure
% required by the evaluation framework's functions
ground = rok_ground_truth_get_points(groundTruth, room, frame);

% Metric A: without distance threshold
metricA = rok_evaluation_anonymous_update(metricA, detections, ...

ground, Inf);

% Metric B: with distance threshold (0.5 meter)
metricB = rok_evaluation_anonymous_update(metricB, detections, ...

ground, 0.5);
end

% Print evaluation results
fprintf('Evaluation using Metric A:\n');
rok_evaluation_anonymous_display(metricA);
fprintf('\n');

fprintf('Evaluation using Metric B:\n');
rok_evaluation_anonymous_display(metricB);
fprintf('\n');

The code below evaluates detection, localization and identification performance of
radio-based system, using Metric A, Metric B and Metric C from [1, Section 5.2]. This
example prints out the confusion matrix like the one reported in [1, Section 6.4] and
the LaTeX code for it.

% Create room configuration, which is needed by wrapper function

13

% for ground truth points
room = rok_room_create('room-config.ini');

% Load ground truth points
groundTruth = GroundTruthDatabase('Data/GroundTruth/config.ini');
numIds = groundTruth.get_num_people();

% Load Ubisense data
ubisense = UbisenseDatabase('Data/Ubisense/config.ini');

% Initialize evaluation structures
metricA = rok_evaluation_full_initialize(numIds);
metricB = rok_evaluation_full_initialize(numIds);
metricC = rok_evaluation_full_initialize(numIds);

for frame = 3721:7761,
% Get detections; this wrapper function returns structured
% required by evaluation framework's functions
detections = rok_ubisense_get_detections(ubisense, frame);

% Get ground truth points; this wrapper function returns structure
% required by the evaluation framework's functions
ground = rok_ground_truth_get_points(groundTruth, room, frame);

% Metric A: no identity information, no thresholding
metricA = rok_evaluation_full_update(metricA, detections, ...

ground, Inf, false);

% Metric 2: no identity information, thresholding (0.5 meter)
metricB = rok_evaluation_full_update(metricB, detections, ...

ground, 0.5, false);

% Metric 3: identity information, no thresholding
metricC = rok_evaluation_full_update(metricC, detections, ...

ground, Inf, true);
end

% Print results for metric 2
fprintf('Full evaluation using Metric B:\n');
rok_evaluation_full_display(metricB);
fprintf('\n\n');

% Print source for LaTeX table
rok_evaluation_full_latex_table(metricB, false);

5.6 Room Configuration Code
For illustration of how the provided calibration data can be used to project 3-D points
to the images, we provide two functions that generate configuration for occupancy-
map-like algorithms. Both functions discretize the room into a grid, and project the
cells into images, using rectangle-based and convex-hull-based appearance model.

The following example assumes that room-config.ini from Section 5.5 has al-
ready been created. This configuration file describes room dimensions and discretiza-
tion. Another configuration file, which provides paths to camera calibration data and
describes the parameters for appearance model (e.g. rectangle height), is required.
Therefore, create a file called rectangles-config.ini, with the following content:

14

rectangles-config.ini: Rectangles configuration file

Cameras
cameras = [1, 2, 3, 4]

Rectangles bottom and top height
height_bottom = 0.0
height_top = 1.75

Calibration
calibration_data_format = Data/Calibration/Camera%c/calibration.mat
calibration_image_format = Data/Calibration/Camera%c/image.jpg
mask_format = Data/Calibration/Camera%c/mask.png

Image scaling (with regards to calibration)
scaling = 0.25

Rectangle filtering parameters
min_area = 15000
only_full_rectangles = false

Using those configuration files, it is possible to create the room configuration:

% Generate room configuration for rectangle-based visual model and
% visualize results. Corners of generated rectangles can be,
% along with other data, found in config.rects
config = rok_room_generate_rectangles('room-config.ini', ...

'rectangles-config.ini', true)

% Generate room configuration for convex-hulls-based visual model and
% visualize results. Vertices of generated rectangles can be, along
% with other data, found in config.hulls
config = rok_room_generate_convex_hulls('room-config.ini', ...

'rectangles-config.ini', true)

5.7 Point Reprojection on Customly-undistorted Images
The dataset provides full camera calibration data, which also allows undistortion of
original frames with parameters that differ from the ones used with undistorted frames,
provided by this dataset. The camera lens calibration data (Section 4.2.2) should be
used together with functions from OCamCalib toolbox to undistort the checkerboard
pattern images, and use those to estimate new intrinsic parameters. Then, the points
used for extrinsic parameters calibration need to be reprojected on newly-undistorted
images, which is demonstrated by the code below (the code assumes that OCamCalib
Toolbox code is already in path):

% This example is for Camera #1
cd './Data/Calibration/Camera1/original';

% Load points on undistorted image
points = load('extrinsic-points.mat');
points_d = points.points(:,4:5)'; % We need only image coordinates

% Read OCamCalib model
model = rok_fisheye_camera_read_model('ocam_calib.txt');

% Read original (distorted) image

15

I_d = imread('image.jpg');

% Plot
figure; imshow(I_d); title('Distorted (original)'); hold on;
plot(points_d(1, :), points_d(2, :), 'r+', 'MarkerSize', 14, ...

'LineWidth', 2);

% Undistort with custom Fc, different from 1.375
fc = 1.0;
I_u = rok_fisheye_camera_undistort_image(model, I_d, fc);
points_u = rok_fisheye_camera_undistort_points(model, points_d, fc);

% Plot
figure; imshow(I_u); title('Undistorted'); hold on;
plot(points_u(1, :), points_u(2, :), 'r+', 'MarkerSize', 14, ...

'LineWidth', 2);

6 Use in Our Papers
At the time of writing, we used the presented dataset in two of our papers [2, 1]. This
technical report was written together with [1], whereas [2] was written earlier, therefore
it uses a bit different room configuration. In particular, in [2] room dimensions were
limited to 0.88–8.0 and 0.55–7.5, in [1], the whole room is used. The training in [2]
was done on every 10th frame in range 3721–5141, while for testing, all frames in
range 5141–7761 were used. In [1], the anonymous detection evaluation was done on
all frames in range 551–2861, whereas tracking was tested on frames 3721–7761.

7 Conclusion
In this technical report, we presented MVL Lab5, a multi-modal indoor person local-
ization dataset. The dataset provides calibrated and time-synchronized video frames
from four video cameras and location event data from radio-based localization system.
Therefore, it is suitable for development and testing of both purely computer-vision-
based methods and methods for fusing video with location events from the radio-based
system, both for the task of person detection, localization and identification.

This document serves as the primary documentation source for the dataset, de-
scribing its availability, acquisition procedure, the data it provides and its format. This
information should allow researchers and developers to make full use of the provided
data. In addition, we provide some of our Matlab code, which on one hand serves as a
reference implementation, but should also ease the use of dataset for new users.

The main part of the dataset comprises 7840 video frames from four calibrated
cameras and data stream from the radio-based system, which corresponds to a 6.5-
minute sequence. The sequence involves five individuals walking around a realistically
cluttered room. The main video data are undistorted frames that were down-scaled to
512×384; however, the dataset also provides both full-sized undistorted and original
frames, which should broaden the possibilities of its further use. We make the dataset
publicly-available in hopes that it will prove useful to other researchers in their work,
primarily in the field of person detection, identification and tracking, but also possibly
in other fields.

16

Document Revisions
• 2012/12/24 — public release

• 2012/10/22 — draft for reviewer-only release of dataset

Acknowledgments
This work was supported by research programs P2-0095 and P2-0098, research project
J2-4284 and the research grant 1000-10-310118, all by Slovenian Research Agency.

References
[1] R. Mandeljc, S. Kovačič, M. Kristan, and J. Perš, “Tracking by identification using computer

vision and radio,” Sensors, vol. 13, no. 1, pp. 241–273, 2012.

[2] R. Mandeljc, S. Kovačič, M. Kristan, and J. Perš, “Non-sequential multi-view detection,
localization and identification of people using multi-modal feature maps,” in Proceedings of
the 11th Asian Conference on Computer Vision (ACCV 2012), 2012.

[3] “Research & Development Packages — Ubisense.” http://www.ubisense.net/en/
rtls-solutions/research-packages.html. Accessed on: 07/2012.

[4] “MVL Lab5 Dataset.” http://vision.fe.uni-lj.si/research/mvl_lab5/.

[5] D. Scaramuzza, A. Martinelli, and R. Siegwart, “A toolbox for easily calibrating omni-
directional cameras,” in Proceedings of the 2006 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2006), pp. 5695–5701, oct 2006.

[6] J. Y. Bouguet, “Camera calibration toolbox for matlab.” http://www.vision.
caltech.edu/bouguetj/calib_doc/, 2010. Accessed on: 07/2012.

[7] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval Research Logistics
(NRL), vol. 52, no. 1, pp. 7–21, 2005.

17

http://www.ubisense.net/en/rtls-solutions/research-packages.html
http://www.ubisense.net/en/rtls-solutions/research-packages.html
http://vision.fe.uni-lj.si/research/mvl_lab5/
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/

	Introduction
	Availability
	Acquisition Procedure
	Scenario
	Camera Calibration

	Data and Format
	Video Frames
	Camera Calibration Data
	Calibration data for undistorted video frames
	Calibration data for original video frames

	Ground-truth Annotations
	Timestamps
	Events from the Ubisense System

	Matlab Code
	External Dependencies
	Timestamp Database Reader
	Ground Truth Database Reader
	Ubisense Database Reader
	Localization System Evaluation Framework
	Room Configuration Code
	Point Reprojection on Customly-undistorted Images

	Use in Our Papers
	Conclusion
	References

